Incorporating prior knowledge into Gene Network Study

نویسندگان

  • Zixing Wang
  • Wenlong Xu
  • F. Anthony San Lucas
  • Yin Liu
چکیده

MOTIVATION A major goal in genomic research is to identify genes that may jointly influence a biological response. From many years of intensive biomedical research, a large body of biological knowledge, or pathway information, has accumulated in available databases. There is a strong interest in leveraging these pathways to improve the statistical power and interpretability in studying gene networks associated with complex phenotypes. This prior information is a valuable complement to large-scale genomic data such as gene expression data generated from microarrays. However, it is a non-trivial task to effectively integrate available biological knowledge into gene expression data when reconstructing gene networks. RESULTS In this article, we developed and applied a Lasso method from a Bayesian perspective, a method we call prior Lasso (pLasso), for the reconstruction of gene networks. In this method, we partition edges between genes into two subsets: one subset of edges is present in known pathways, whereas the other has no prior information associated. Our method assigns different prior distributions to each subset according to a modified Bayesian information criterion that incorporates prior knowledge on both the network structure and the pathway information. Simulation studies have indicated that the method is more effective in recovering the underlying network than a traditional Lasso method that does not use the prior information. We applied pLasso to microarray gene expression datasets, where we used information from the Pathway Commons (PC) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) as prior information for the network reconstruction, and successfully identified network hub genes associated with clinical outcome in cancer patients. AVAILABILITY The source code is available at http://nba.uth.tmc.edu/homepage/liu/pLasso.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian causal phenotype network incorporating genetic variation and biological knowledge

A Bayesian network has often been modeled to infer a gene regulatory network from expression data. Genotypes along with gene expression can further reveal the regulatory relations and genetic architectures. Biological knowledge can also be incorporated to improve the reconstruction of a gene network. In this work, we propose a Bayesian framework to jointly infer a gene network and weights of pr...

متن کامل

Topology Constraints in Graphical Models

Graphical models are a very useful tool to describe and understand natural phenomena, from gene expression to climate change and social interactions. The topological structure of these graphs/networks is a fundamental part of the analysis, and in many cases the main goal of the study. However, little work has been done on incorporating prior topological knowledge onto the estimation of the unde...

متن کامل

Gene Network Reconstruction by Integration of Prior Biological Knowledge

With the development of high-throughput genomic technologies, large, genome-wide datasets have been collected, and the integration of these datasets should provide large-scale, multidimensional, and insightful views of biological systems. We developed a method for gene association network construction based on gene expression data that integrate a variety of biological resources. Assuming gene ...

متن کامل

Incorporating Prior Domain Knowledge Into Inductive Supervised Machine Learning Incorporating Prior Domain Knowledge Into Inductive Machine Learning

The paper reviews the recent developments of incorporating prior domain knowledge into inductive machine learning, and proposes a guideline that incorporates prior domain knowledge in three key issues of inductive machine learning algorithms: consistency, generalization and convergence. With respect to each issue, this paper gives some approaches to improve the performance of the inductive mach...

متن کامل

Incorporating Prior Knowledge into Extension Neural Network and its Application to Recognition of Safety Status Pattern of Coal Mines

Incorporating prior knowledge (PK) into learning methods is an effective means to improve learning performance. On the bases of requirements of engineering practice and the characteristics of knowledge representation of extension neural network (ENN), with the purpose of further improving the performance of ENN in engineering practice, a prior-knowledge-based ENN (PKENN) recognition method is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 29 20  شماره 

صفحات  -

تاریخ انتشار 2013